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ARTICLE INFO ABSTRACT

Keywords: The aim of this study was to reveal the phenolic profile of mangosteen (Garcinia mangostana L.) pericarp and
Maﬂgofteen (Gar cinia mangostana 1..) pericarp investigate their inhibitory effects on a-amylase and a-glucosidase. Mangosteen pericarp polyphenols (MPP)
Phenolic profile obtained by acetone extraction were fractionated with gradient ethanol elution. A total of twenty nine phenolic

Gradient ethanol elution
a-amylase
a-glucosidase

chemicals were found and quantified by UPLC-Q-TOF-MS/MS. MPP eluted by the 60% ethanol solution
(MPPg0o,) showed the highest total phenolic content. Moreover, MPPgqq, displayed the greatest inhibition ac-
tivities on a-amylase and a-glycosidase by competitive and mixed inhibitions. Mechanistically, the inhibitory
effects of MPPg9, on a-amylase and a-glucosidase involved the changes of the secondary structure as well as the
static fluorescence quenching of these enzymes. Pearson correlation coefficients revealed that procyanidin B2,
quercetin glucoside, and mangostain contributed most to inhibiting the activities of a-amylase and a-glucosidase.
This study indicated that polyphenols from mangosteen pericarps can be developed into potential inhibitors of
a-amylase and a-glucosidase, offering a viable strategy for the valorization of mangosteen pericarps.

enzymes in human glucose metabolism. Alpha-amylase hydrolyzes the
a-(1, 4)-D-glycosidic bonds of starch or other glucose polymers in the
digestion process of carbohydrates (Janecek et al., 2014), while
a-glucosidase cleaves the glycosidic bond of the oligosaccharides that
liberate glucose as the final digestive product (Hossain et al., 2020;
Zhang et al., 2020). Thus, inhibitors for a-amylase or a-glucosidase
played a significant role in combating diabetes. Acarbose and voglibose,
the main drugs for the treatment of diabetes, could effectively inhibit the
level of postprandial blood glucose, while side effects including nausea,
vomiting, flatulence, renal dysfunction as well as drug resistance had
been frequently reported with long-term use. Natural compounds from
plant resources with attractive safety property are intensively explored
as inhibitors of these key digestive enzymes.

A broad class of chemicals known as polyphenols have at least one
aromatic ring along with one or more hydroxyl groups and other sub-
stituents. Based on their chemical structures, polyphenols can be cate-
gorized into numerous classes, including lignans, stilbenes, flavonoids,

1. Introduction

With the changes in people’s lifestyles and dietary structure, the
incidence of type 2 diabetes caused by obesity was increasing year by
year. Diabetes and its complications had emerged as a significant
worldwide public health issue, it was considered as the third major non-
communicable chronic disease threatening human health after tumors
and cardiovascular diseases (Tinajero & Malik, 2021). Based on esti-
mates from the International Diabetes Federation, the number of adults
(aged 20-79) with diabetes worldwide was 537 million in 2021 and is
expected to reach 783 million by 2045 (Sun et al., 2022; Yan et al.,
2022). Numerous studies have demonstrated a strong correlation be-
tween persistent postprandial hyperglycemia and the establishment of
type 2 diabetes. Therefore, effectively reducing postprandial blood
glucose levels has become a key component of diabetes treatment.

Alpha (a)-amylase and a-glucosidase are the most important
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Abbreviation

o alpha

B beta

CD circular dichroism

Y gamma

ESI electrospray ionization

1Cso half maximal inhibitory concentration
MP mangosteen pericarps

MPP mangosteen pericarp polyphenols
MPPyqy, MPP eluted by the 20% ethanol solution
MPP,gy, MPP eluted by the 40% ethanol solution
MPPgoo, MPP eluted by the 60% ethanol solution
MPPggy, MPP eluted by the 80% ethanol solution
PAHBAH para-hydroxybenzoic acid hydrazide
PBS phosphate-buffered saline

pNPG 4-Nitrophenyl-p-p-glucopyranoside

Q-TOF-MS quadrupole time-of-flight mass spectrometry
SD standard deviation

TPC total phenolic content

UPLC ultra-high performance liquid chromatography
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Fig. 1. Adsorption and desorption rates of polyphenols in three different resins.
Different letters indicated significant differences in adsorption or desorption (P
< 0.05).

and phenolic acids (Croft, 2016; Karas et al., 2016). To date, more than
8000 polyphenols have been found in plant-related products, such as
coffee, tea, olive oil, fruits, vegetables, wine, nuts, beans, and whole
grains. Polyphenols have attracted great attention for their effective
antioxidant properties and protective roles against tumor growth,
neurodegenerative conditions, diabetes, etc (Cao et al., 2018; Luca et al.,
20205 Stefek, 2011; Xiao & Hogger, 2015). Numerous epidemiological
and nutritional evidences suggested that natural dietary polyphenols
exerted the ability to inhibit a-amylase and a-glucosidase (Papoutsis
et al., 2021). However, the polyphenols reported previously were
mainly crude extracts from plant sources, besides, the underlying inhi-
bition mechanisms remain elusive. Therefore, fractionation of the crude
extracts is recommended to prepare the phenolic compounds with in-
hibition activities on a-glucosidase and a-amylase, as it may help to
clarify the contribution of each class of bioactive compounds to inhibit
these enzymes activities.

Mangosteen (Garcinia mangostana L.) is an inter-hybrid fruit, native
to Malaysia and Indonesia, now mainly distributed in Southeast Asian
countries and cultivated in Guangdong, Hainan, Fujian, Taiwan, and
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other provinces in China. The use of mangosteen in the food processing
industry for fruit wine, preserves, jams, purées and other products
produced a large number discard of pericarps. Mangosteen pericarps
(MP), riched in pectin, crude fiber and polyphenols, were 60% of the
fresh weight of a single fruit, and they had a certain role in antioxidant,
anti-inflammatory, anti-bacterial and anti-cancer (Lim et al., 2020;
Wihastuti et al., 2019). In Southeast Asia, mangosteen pericarps were
used as a folk medicine to treat suppuration, chronic ulcers, infected
wounds, diarrhea, and dysentery. Mangosteen peel infusion was re-
ported to ameliorate the liver and kidney’s histological structures and
function in HyO5 induced rats (Rusman et al., 2021). Ghasemzadeh and
colleagues found that a-mangostin obtained with microwave-assisted
extraction from mangosteen pericarp exhibited high antibacterial ac-
tivity, particularly against Gram-positive bacteria (Ghasemzadeh et al.,
2018). However, the phenolic profile of mangosteen pericarp and their
potential anti-diabetic activity still not be fully illuminated. Thus, the
phenolic profile of mangosteen pericarp was explored by gradient
ethanol elution and UPLC-Q-TOF-MS/MS. Moreover, the inhibition ac-
tivities of mangosteen pericarp polyphenols (MPP) on a-amylase and
a-glucosidase, as well as the contribution of each phenolic component to
the inhibitory effects were revealed in this study.

2. Materials and methods
2.1. Reagents and chemicals

Ethanol, acetone, and concentrated hydrochloric acid were supplied
from Fuyu Co., Ltd. (Tianjin, China). Glacial acetic acid, sodium hy-
droxide, and 4-hydroxybenzoyl hydrazide were supplied by Macklin
Biochemical Technology (Shanghai, China). Anhydrous sodium car-
bonate was purchased from Aladdin Biochemical Technology (Shanghai,
China). Formic acid, acetonitrile, quercetin, catechin, p-hydroxybenzoic
acid, rutin, cornflower-3-O-glucoside, luteolin, gallic acid, epicatechin,
p-coumaric acid, procyanidin B2, a-mangostin, salicylic acid (>98%
purity by HPLC), a-amylase (porcine pancreas), and a-glucosidase
(Saccharomyces cerevisiae) were obtained from Sigma-Aldrich (Saint
Louis, MO, USA). 4-Nitrophenyl-p-p-glucopyranoside (pNPG) was sup-
plied by Yuanye Biotechnology Co., Ltd. (Shanghai, China).

2.2. Phenolic compounds extraction

Mangosteen pericarps (10.0 g) were homogenized with 80% frozen
acetone (50 mL) for 3 min with an ice bath and then centrifuged with
1200xg for 10 min to collect the supernatants. The extraction process
was repeated three times. The combined supernatants were evaporated
and then mixed with 30 mL of acetone containing 0.1% acetic acid
followed by filtering with 0.45 pm nylon filter membrane. Finally, the
MPP were obtained and then stored in a —80 °C refrigerator for further
analysis.

2.3. Static adsorption and desorption test

Three different types of macroporous resins, namely HPD300, AB-8,
and NKA-9, were applied to purify phenolic compounds. Firstly, the
macroporous resins were soaked in ethanol for 24 h followed by rinsing
with pure water. After soaking in 1.4 1.4 mol/L HCl and 0.5 mol/L
NaOH for 4 h, the resins were washed with deionized water to bring
their pH down to neutral. The static adsorption as well as desorption of
phenolic compounds was performed as follows:

Static adsorption test: Accurately weighed 1.000 g of each resin to
30 mL of phenolic compounds extract in the dark conditions, oscillated
with 100 r/min at 25 °C for 24 h, then determined the phenolic content
of the supernatant. Calculated the adsorption rate (%) as Eq (1):

Cy—C

Adsorption rate (%) :C—l x 100 1)
0
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Table 1
Quantitative analysis of phenolic constituents in mangosteen pericarps.
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Phenolic Phenolic components Content of identified component (ug/g elution)
component MPP (ug/g  MPPagy, MPPago; MPPgo0 MPPggy,
category
extract)
Procyanidins procyanidin B1 4114.85 + 15545.03 + 6598.60 + 9402.60 + 7987.22 +
455.03 2469.30 322.62 341.62 165.55
procyanidin B2 24796.86 + 788.99 + 41736.88 + 44309.87 + 48508.93 +
2271.85 182.46 1183.98 1047.59 1687.71
Flavanols catechin 21561.79 + 22513.83 + 29117.06 + 30020.74 + 32179.39 +
1175.67 2235.59 927.17 1479.85 941.03
epicatechin 295.46 + 662.04 + 4.26 +£0.18 457.07 + 526.05 +
32.60 81.79 149.74 32.16
dihydroquercetin (quercetin equivalents) 114.16 + 160.77 + 175.94 + 2791 +£0.75 22232 +
10.39 9.33 2.08 12.46
quercetin glucoside 139.51 + 2439 £6.53  230.29 + 385.37 + 301.31 +
11.49 7.48 8.16 14.91
rutin 826.57 + - 1497.09 + 2367.51 + 1784.25 +
75.22 88.23 126.29 124.36
Phenolic acids salicylic acid 0.27 + 0.09 2.31 £0.33 0.95 +0.11 4.51 + 0.04 1.08 £0.11
gallic acid 18.30 +2.04 22.88+4.59 57.39+4.68 65.07 +9.39 55.83+7.01
coumarin acid - 58.88 +2.77 - - -
Anthocynidins cyanidin 166.48 + 2726.33 + 96.67 + 467.87 + 148.69 +
28.35 640.60 17.64 33.02 9.31
Flavonoids luteolin 46.66 + 8.37 - 84.11 £ 3.21 150.78 + 117.03 £
8.17 13.90
Xanthones a-mangostin 8615.93 + 79.71 £ 16.46 + 1.64 41.52 +5.44  36.01 + 0.08
4613.02 11.90
p-mangostin 79.89 + 8.97 £ 0.17 - 8.85 +0.11 -
40.48
garcinone C 12.17 £ 0.45 50.33 +7.94 1581 +0.42 13.85+4.16 17.62+0.71
mangostanin 15.07 + 0.37 9.85 £ 0.13 9.24 + 0.54 20.96 + 0.31 9.39 £0.21
garcinoxanthone D or E 25.27 + 464 - - 42.61 +£0.15  27.51 +£1.10
9-hydroxycalabaxanthone or garcimangosone B 37.77 £ 8.39 + 0.29 8.28 +£0.10 - -
15.90
1,3,7-trihydroxy-2-(3-methylbut-2-enyl) -xanthone 92.38 + 6.69 + 0.06 - - -
47.01
1,7-dihydroxy-2-(3-methylbut-2-enyl) -3-methoxyxanthone 89.33 + 6.62 + 0.04 - - -
40.71
garcinone E or 4,5-dihydro-1,3,6-trihydroxy-6',6-dimethyl-2,5-bis(3- 477.69 + 16.18 £ 0.28  9.43 +0.11 1490 £ 0.10  9.66 + 0.15
methylbut-2-en-1-yD)pyrano [2',3:7,8] xanthone 289.87
- 17.00 + 3.42 14.24 + 0.33 14.36 + 3.89 15.41 £+ 0.38
1,3,6,7-tetrahydroxy-8-prenylxanthone 138.01 + 8.50 + 0.28 8.00 + 1.30 13.18 + 0.29 22.37 +
29.30 10.07
1,3,8-trihydroxy-2-(3-methyl-2-butenyl) -4-(3-hydroxy-3- 17.18 + 1.79 60.74 £+ 6.57 28.98 +1.21 30.19 £ 1.15 32.88 + 2.63
methylbutanoyl)-xanthone or 1,2-dihydro-1,8,10-trihydroxy-2-(2-
hydroxypropan-2-yl) -9-(3-methylbut-2-enyl) furo [3,2-a] xanthen-11- 1374+ 1.32 - - 2227 £029  14.96 £ 0.48
one
y-mangostin 2738.35 + 3499 +6.03 10.76 +1.10 11.54+0.11 13.68 + 0.78
687.41
cudraxanthone G 9.20 + 0.41 9.49 £0.18 9.67 +£0.23 8.97 £ 0.31 9.11 + 0.34
7-O-methylgarcinone E, mangostanaxanthones II or parvifolixanthone 1242+ 237 - - - -
C
garcimangosxanthone F 12.76 £ 2.05 - - - -
garcimangosxanthone G 29.55 + - - - -
10.49
calocalabaxanthone 17.52 +0.58 17.18 +0.48 17.82+1.25 20.81 +0.52 19.45 + 1.36

Notes: MPP, polyphenols extracted with 80% frozen acetone from mangosteen pericarp; MPP2qo,, MPP eluted by the 20% ethanol solution; MPP4q0,, MPP eluted by the
40% ethanol solution; MPPgqs,, MPP eluted by the 60% ethanol solution; MPPgqo,, MPP eluted by the 80% ethanol solution.

Correction factors for quercetin glucoside; p-mangostin, garcinone C; mangostanin, garcinoxanthone D or E; 9-hydroxycalabaxanthone or garcimangosone B; 1,3,7-
trihydroxy-2- (3-methylbut-2-enyl) -xanthone; 1,7-dihydroxy-2-(3-methylbut-2-enyl)-3-methoxyxanthone; garcinone E or 4',5-dihydro-1,3,6-trihydroxy-6',6"-
dimethyl-2,5-bis (3-methylbut-2-en-1-yl) pyrano [2,3’:7,8] xanthone; 1,3,6,7-tetrahydroxy-8-prenylxanthone; 1,3,8-trihydroxy-2- (3-methyl-2-butenyl) -4- (3-hy-
droxy-3-methylbutanoyl) -xanthone or 1,2-dihydro-1,8,10-trihydroxy-2- (2-hydroxypropan-2-yl) -9- (3-methylbut-2-enyl) furo [3,2-a] xanthen-11-one; y-mangostin;
cudraxanthone G; 7-O-methylgarcinone E; mangostanaxanthones II or parvifolixanthone C; garcimangosxanthone F; garcimangosxanthone G; and calocalabaxanthone
were 1.54, 1.03, 1.01, 1.04, 1.08, 0.99, 0.76, 0.79, 1.13, 0.80, 1.01, 0.97, 0.96, 1.17, 1.17, 1.17, and 2.0, respectively.

Co and C; represented the initial and the final concentrations of
phenolic compounds in the adsorption experiment (mg/mL),
respectively.

Static desorption test: The resins that had fully adsorbed phenolic
compounds in the static adsorption test were washed and dried, then
60% ethanol solution was added to oscillate with low speed in a clean
shaking bottle, the phenolic content in the supernatant was measured
per 60 min, and the desorption rate (%) was calculated as Eq (2):

C
Desorption rate (%) = ——->— x 100 2)
Co—Cy
Co and C; represented the initial and the final concentrations of
phenolic compounds in the adsorption experiment (mg/mL); C, was the
concentration of phenolic compounds in the desorption solution (mg/
mL).
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Table 2

LWT 203 (2024) 116350

The ICsq values for inhibition activity of mangosteen pericarp phenolics on a-amylase and a-glycosidase.

ICsp (hg/mL)

MPP MPP2g MPP0y MPPgo MPPgos; Acarbose
a-amylase 362.56 + 4.44° 2023.05 + 9.97f 504.20 + 16.83¢ 290.10 + 4.94° 1376.99 + 53.69° 49.94 + 2.70°
a-glycosidase 7.81 £ 0.69° 31.14 + 1.78¢ 6.11 + 0.07% 6.20 + 0.15° 15.21 + 1.20° 53.35 + 5.44¢

Data were showed as mean =+ SD. Different letters indicated significant differences in the same row (P < 0.05).

2.4. Purification of phenolic compounds

The purification of phenolic compounds was performed as described
with slight modifications (Li et al., 2017b). The crude extracts were
dissolved in acidified acetone (acetone/acetic acid, 99.9/0.1, v/v) and
loaded on an HPD300 column with a ratio of 1 g phenolic compounds
per 100 g of filler. Impurities were eliminated using distilled water at a
flow rate of 1.0 mL/min. After that, the adsorbed phenolic compounds
were eluted using 20%, 40%, 60%, and 80% (v/v) of ethanol containing
0.1% HCI. The four eluents were evaporated and vacuum freeze-dried
respectively. Then, the Folin-Ciocalteu method was employed to calcu-
late the total phenolic content (TPC) of the eluted fractions, with gallic
acid serving as the reference (Zheng et al., 2017). The TPC was given in
mg of gallic acid equivalents (GAE)/g of fraction.

2.5. Qualitative and quantitative analysis by UPLC-Q-TOF-MS/MS

Phenolic components were analyzed using the ultra-high perfor-
mance liquid chromatography (UPLC)-quadrupole time-of-flight mass
spectrometry (Q-TOF-MS) coupled with the electrospray ionization
(ESI) source. The chromatographic separation procedure was performed
on the ExionLC™ system (AB Sciex, USA) with ACQUITY UPLC BEH
HILIC column (2.1 x 100 mm, 1.7 pm, Waters Corp., Milford, MA, USA).
0.1% formic acid in ultrapure water (mobile phase A) and acetonitrile
(mobile phase B) served as the mobile phase. The solvent gradient was as
follows: 5% B for 0-1 min; 5-65% B for 1-6 min; 65-100% B for 6-18
min; 100-5% B for 18-20 min; and 5% B for 20-25 min. The injection
volume was 2 pL. The flow rate was 0.25 mL/min and the column
temperature was 35 °C. The AB Sciex X500R Q-TOF-MS equipped with
ESI was operated in negative ion mode. The nitrogen used as the curtain
gas (35 psi), the air used as the nebulizer gas and turbo gas (55 psi), the
collision energy (CE) was —10 V, and the declustering potential voltage
was —100 V. The scanning range was from 100 to 1100 mass-to-charge
ratio, and the heater temperature was 600 °C. UPLC-Q-TOF/ESI-MS data
was analyzed by SCIEX OS Software (ver 1.8) (AB Sciex, USA).

Peak area integral was applied for quantification. Reference com-
pounds, structurally similar compounds, or compounds from the same
subclass (adjusted by molecular weight) were used to generate calibra-
tion curves (Chandra et al., 2001), including procyanidin B2 (for pro-
cyanidins), quercetin (for quercetin and quercetin-based flavonols),
rutin, catechin, epicatechin, gallic acid, salicylic acid, coumarin, cya-
nidin, luteolin, and a-mangostin (for a-mangostin and other xanthones).
Calibration curves were obtained from different concentrations (0.002,
0.02, 0.2, 2.0, 20.0 pg/mL) of standard, y (procyanidin B2) =
672372x-16046.96, R?= 0.993; y (catechin) = 1309460x-962.38, R%2=
0.999; y (epicatechin) = 1508590x-4997.46, R? = 0.999; y (rutin) =
1604220x-25669.47, R? = 0.998; y (quercetin) = 4399530x+2206.38,
R? = 0.992; y (salicylic acid) = 90721.7x-302.09, R? = 0.999; y (gallic
acid) = 481008x+583.35, R? = 0.994; y (p-coumarin acid) =
668793x+382.66, RZ = 0.996; y (cyanidin) = 451459x-7326.98, R? =
0.998; y (luteolin) = 6187800x+151303.00, R? = 0.998; y (o-man-
gostin) = 5663060 x-45874.70, R% = 0.999. The findings were presented
in terms of pg/g of eluate.

2.6. Inhibition assay of a-amylase and a-glucosidase

The inhibitory effect of MPP or ethanol-eluted fractions on a-amylase

was assessed based on the method described previously (Chen et al.,
2019). Briefly, normal maize starch (1 mg/mL) was prepared in 20 mL of
phosphate-buffered saline (PBS), boiled at 100 °C for 30 min with in-
hibitor (0-2.5 mg/mL) present, then incubated at 37 °C in a water bath
with mixing. For each dispersion, 1 mL of a-amylase (0.48 U/mL) was
applied. After 4, 8, and 12 min, starch samples (300 pL) were collected
and combined with 1.2 mL of 0.3 mol/L Nay;CO3 solution to halt the
reaction. After that, these samples were centrifuged for 5 min at 1500xg
to remove the unreacted inhibitor and starch. The p-benzoic acid hy-
drazide (PAHBAH) technique was applied for the determination of
reducing sugar content (Sun et al., 2016). The slope of a plot showing
reducing sugar concentration against time was used to calculate the
initial reaction velocity (v). In the assay, the inhibition percentage (%)
was calculated using Eq (3):

Inhibition percentage (%) = (1 - yi) x 100 3)
0

where v and vy were the initial reaction velocities in the system with or
without inhibitor.

The inhibitory assay of a-glucosidase was performed according to
Zhang et al. (2016). Briefly, 100 pL of a-glucosidase (0.5 U/mL) was
mixed thoroughly with MPP or the ethanol-eluted fractions, and then
incubated at 37 °C for 10 min. Then 500 pL of pNPG (5 mM) was
incorporated into the mixture, after an extra 10 min of incubation, the
absorbance was measured at 405 nm. The inhibition percentage (%) was
obtained using Eq (4):

Inhibition percentage (%) = (1 - %) x 100 @
0

Where Aj and A; are the absorbance in the system with or without in-
hibitor. Ay is the absorbance of the sample without pNPG solution.
Acarbose was used as positive control.

2.7. Inhibition kinetic analysis

Inhibition kinetics were determined based on the method of inhibi-
tion assay. Maize starch and pNPG with a concentration of 5, 10, 15, 20
and 25 mg/mL were used as substrates for a-amylase and a-glucosidase.
The catalytic rate of a-amylase or o-glucosidase to substrates was
measured in the presence of various amounts of MPP eluted by the 60%
ethanol solution (MPPgqq,), then the inhibition kinetic was analyzed by
Lineweaver-Burk plot. Dixon plot (Eq. (5)) was used to determine
competitive inhibition constant K;. and Cornish-Bowden plot (Eq. (6))
was applied to obtain uncompetitive inhibition constant Ky, (Eisenthal &
Cornish-Bowden, 1974).

v Vinaxat )
Km<1 +K—) +a<1 +K—)
v Vinax

= (6)
Km<1 +K—) +a<1 +K—)

The K;j. was the absolute vaue of the intersection points of the ab-
scissa in Dixon plot, and the K;, was the absolute vaue of the intersection
points of horizontal coordinates in Cornish-Bowden plot.
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Fig. 2. Inhibition kinetic of MPPg(q, against a-amylase and a-glucosidase. (A) Lineweaver-Burk plots of MPPgq, for a-amylase. (B) Dixon plots of MPPgq, for
a-amylase. (C) Cornish-Bowden plots of MPPgq, for a-amylase. (D) Lineweaver-Burk plots of MPPgqq, for a-glucosidase. (E) Dixon plots of MPPggq, for a-glucosidase.

(F) Cornish-Bowden plots of MPPggy, for a-glucosidase.

2.8. Circular dichroism spectroscopy analysis

The circular dichroism (CD) spectra for the complexes of a-amylase/
a-glucosidase with MPPggy, was obtained using Chiracan V100 spec-
trophotometer (Applied Photophysics Ltd., England). The spectra were
acquired in the far-UV range (190-260 nm) at a response time of 1 s, a
path length of 1.0 mm, and a scan speed of 100 nm/min. For every

spectrum, three scans were accumulated. The a-amylase (0.48 U/mL)
was individually incubated with 0, 50, 100, 125, 150, 200 and 250 pg/
mL of MPPgg, and a-glucosidase (0.50 U/mL) was individually incu-
bated with 0, 1, 2, 3, 4, 5 and 6 pg/mL of MPPgq, at 37 °C for 15 min.
The CD spectrogram data was quantitatively analyzed by CDNN
software.
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Fig. 3. Effects of MPPggy, on the secondary structure of a-amylase and
a-glucosidase. (A) a-amylase, (B) a-glucosidase.

2.9. Fluorescence quenching

Specific amounts of a-amylase or a-glucosidase were incubated with
0.3 mL of MPPgqo, for 5 min at three temperatures (277.15 K, 298.15 K,
and 310.15 K). The fluorescence was measured using a fluorescence
spectrophotometer with an excitation wavelength of 280 nm and an
emission wavelength of 300-400 nm. Values of fluorescence quenching
constant (K,) and the Stern-Volmer quenching constant (K,,) were ob-
tained through the following,

Fo/F = 1+ Kq1o[Q] = 1 + Ky[Q] ™

where Fy and F represented the fluorescence intensities of enzymes in
the absence and presence of MPPgqo; Kq was the bimolecular quenching
constant; Ty was the lifetime of the fluorophore without quencher, for
a-amylase, T = 2.97 X 108 ns (Prendergast et al., 1983), for a-gluco-
sidase, 19 =1 x 10~ 8ns (Han et al., 2023); [Q] represented the quencher
concentration, and Ky, the Stern-Volmer quenching constant, was
equivalent to K. L-mg ! and L-mg ™! s~! were utilized as units of Kj,
and K, respectively, to identify the type of fluorescence quenching, due
to the molecular weights of MPPgq, being unknown.

2.10. Statistical analysis

Data was displayed as the mean + standard deviation (SD).
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Statistical significance was analyzed through one-way ANOVA followed
by the Duncan’s test using SPSS 27.0 software. In addition, the Pearson
correlation coefficients were carried out using SPSS. Comparison with P
< 0.05 was considered to be statistically significant. All the analysis was
performed in triplicate.

3. Results and discussion
3.1. Elution and purification

The adsorption and desorption rates of MPP in different resins were
shown in Fig. 1. The adsorption rates of HPD300, AB-8, and NKA-9 were
92.1 £+ 0.7%, 91.8 £ 0.6%, and 74.6 + 0.2%, suggesting that HPD300
and AB-8 had a far greater adsorption efficiency than that of NKA-9 (P <
0.05). The desorption rate of NKA-9 was 92.1 + 0.4%, which was much
higher than that of HPD300 (75.1 + 0.6%) and AB-8 (73.7 + 4.4%).
Comprehensively, HPD300 was used for the purification of MPP in the
current study.

The ethanol concentration of the eluent greatly affected the
composition of the components in the eluate (Chen et al., 2016). To
disclose the comprehensive profiles of phenolic compounds from
mangosteen pericarp, the crude extracts were refined using an HPD300
column, and various eluates were obtained by employing ethanol solu-
tions at 20%, 40%, 60%, or 80% (v/v) concentration. TPC for these four
fractions was then determined. The greatest TPC was found in MPPgqo,
(623 mg/g), which was followed by MPP eluted by the 40% ethanol
solution (MPP4,, 589 mg/g), MPP eluted by the 80% ethanol solution
(MPPg(y, 543 mg/g), and MPP eluted by the 20% ethanol solution
(MPPyy, 326 mg/g). Polyphenols from apple pomace were also sepa-
rated with gradient ethanol elution and HPLC analysis revealed that the
majority of the polyphenols were present in fractions eluted between
40% and 50% aqueous ethanol (Cao et al., 2009). We proposed that MPP
could be effectively purified by gradient elution with different ethanol
concentrations, and the 60% ethanol solution had the best elution effect.

3.2. Qualitative and quantitative analysis

The crude extract (MPP) and these four purified fractions (MPPogo,
MPP 4904, MPPg00, and MPPgo,) were subjected to UPLC-TOF-MS/MS for
identification and quantitation of individual phenolic. A total of twenty
nine phenolic components were found, including two procyanidins, five
flavanols, three phenol acids, one anthocynidin, one flavonoid, and
seventeen xanthones. The quantitation data of the phenolic compounds
in MPP, MPP5g9,, MPP 409, MPPgo,, and MPPgqo, was shown in Table 1.
The major procyanidins in mangosteen pericarps were procyanidins B1
and B2, in particular, procyanidins B2 accounted for about 86% of the
total procyanidins in tested samples except in MPPyq¢,. The content of
procyanidins B2 in MPPygo, was only 788 pg/g, accounting for 0.05% of
the total procyanidins. In addition, procyanidin B2 was the most
abundant component among the detected components in MPP. Procya-
nidins B1 was mainly enriched in MPPgq, followed by MPPggy. The
identified anthocynidin and flavonoid were cyanidin and luteolin,
respectively. Among the flavonols, catechin accounted for 72% of the
total flavonols. The contents of catechin in MPP, MPPygy, MPP4g0,
MPPgqs, and MPPgq, were 21.56, 22.51, 29.11, 30.02, and 32.18 mg/g,
respectively. Rutin, epicatechin, quercetin glucoside, and taxifolin were
also found in low amounts in each sample. Phenolic acids in mangosteen
pericarps were mainly salicylic acid, gallic acid, and coumaric acid,
while p-coumaric acid (58.88 pg/g) was only found in MPPyg0,. The most
abundant phenolic compounds in mangosteen pericarps were xan-
thones, which were mainly enriched in MPP. Alpha-mangostin, }-man-
gostin, and gamma (y)-mangostin were the main components in MPP
with a quantity of 8615.93, 79.89, and 2738.35 pg/g, respectively. Only
twenty-one main components were found by UPLC-ESI-QTOF-MS/MS in
polyphenols extracted with HCl aqueous from mangosteen pericarp (Li
et al., 2022). Polyphenol profiles showed remarkable differences due to
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Fig. 4. Fluorescence quenching of a-amylase and a-glucosidase by MPPg9, at different temperatures. (A) 277.15 K for a-amylase. (B) 298.15 K for a-amylase. (C)
310.15 K for a-amylase. (D) Stern-Volmer plots for a-amylase. (E) 277.15 K for a-glucosidase. (F) 298.15 K for a-glucosidase. (G) 310.15 K for a-glucosidase. (H)
Stern-Volmer plots for a-glucosidase. The concentrations of MPPgq, to a-amylase were (a) black line, 0 pg/mL (b) red line, 50 pg/mL (c) blue line, 100 pg/mL (d)
green line, 125 pg/mL (e) purple line, 150 pg/mL (f) yellow line, 200 pg/mL (g) cyan line, 250 pg/mL. The concentrations of MPPgge, to a-glucosidase were (a) black
line, O pg/mL (b) red line, 1 pg/mL (c) blue line, 2 pg/mL (d) green line, 3 pg/mL (e) purple line, 4 pg/mL (f) yellow line, 5 pg/mL (g) cyan line, 6 pg/mL. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

the variations of solvents. It was reported that the acetone-acid system
was able to obtain more compositions of polyphenols than the simple
acid system (Li et al., 2017a), this could be the reason why more
phenolic chemicals were identified in our samples.

Most of the phenolic compounds were consistently found in MPPgqo,

and MPPgpy. A few components were enriched in only one ethanol
eluent, for example, coumaric acid was only found in the MPPyqq, 1,3,7-
trihydroxy-2-(3-methylbut-2-enyl) -xanthone and 1,7-dihydroxy-2-(3-
methylbut-2-enyl) -3-methoxyxanthone were enriched in MPP and
MPPygy. Hence, phenolic compounds from mangosteen pericarp
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Table 3
Binding constants of interaction between MPPgq, and a-amylase/a-glucosidase.

Enzyme Tm (K)  Regression equation K, (Lmg ") K,(Lmg's ™"
a-amylase 27715 y=0.1254x+1.008  0.1254 0.4222 x 10®
(R? = 0.995)
298.15 y=0.1240x + 0.998  0.1240 0.4175 x 10°
(R? = 0.997)
310.15 y=0.1212x+0.995 0.1212 0.4081 x 10°
(R? = 0.980)
a-glucosidase ~ 277.15  y=0.0200x + 1.029  0.0200 0.0200 x 10
(R? = 0.993)
298.15 y=0.0193x +1.006  0.0193 0.0193 x 10*!
(R? = 0.998)
310.15 y=0.0180x+0.996  0.0180 0.0180 x 10™*
(R? = 0.998)

Table 4
Pearson correlation coefficients (r) for chemical composition and bioactive
capacities of MPPggo.

Phenolic components r value
a-glucosidase  a-amylase

procyanidin Bl 0.891 0.893
procyanidin B2 —0.886 —0.881
catechin —0.532 —0.524
epicatechin 0.612 0.615
dihydroquercetin 0.164 0.177
quercetin glucoside —0.763 —0.761
rutin 0.027 0.101
salicylic acid 0.157 0.153
gallic acid —0.543 —0.539
cyanidin 0.991 0.990
luteolin 0.126 0.178
o-mangostin —0.247 —0.254
p-mangostin —0.497 —0.497
garcinone C 0.993 0.994
mangostanin —0.997 —0.999
garcinoxanthone D or E —0.542 —0.449
9-hydroxycalabaxanthone or garcimangosone B —0.495 —0.500
1,3,6,7-tetrahydroxy-8-prenylxanthone —0.294 —0.300

1,3,8-trihydroxy-2-(3-methyl-2-butenyl) -4-(3- 0.935 0.938
hydroxy-3-methylbutanoyl)-xanthone

1, 2-dihydro-1, 8, 10-trihydroxy-2-(2-hydroxypropan- ~ —0.531 —0.438
2-yl) -9-(3-methylbut-2-enyl) furo [3, 2-a] xanthen-
11-one
y-mangostin —0.244 —0.251
cudraxanthone G 0.388 0.389
calocalabaxanthone —0.501 —0.500
garcinone E —0.241 —0.250

extracts could be effectively separated by using gradient ethanol eluent.

3.3. Inhibitory effects on a-amylase and a-glucosidase

The inhibitory effects of MPP on a-amylase/a-glucosidase were in a
dose-dependent manner. The half maximal inhibitory concentration
(ICs0) values of MPP against a-amylase/a-glucosidase were presented in
Table 2. Results showed that the ICsq values of MPP, MPP5go,, MPP4g0,
MPPg¢, and MPPgqo, to a-amylase were 362.6 + 4.4, 2023.1 + 10.0,
504.2 + 16.8, 290.1 + 4.9 and 1377.0 + 53.7 pg/mL, respectively. The
ICsg of acarbose to a-amylase was 49.9 + 2.7 pug/mL. Adnyana et al.
(2016) also reported that the a-amylase inhibition activity of mango-
steen pericarps crude extract (extracted by reflux method in 50%
ethanol) was much lower than that of acarbose. Given that MPPg¢qo, had
the strongest inhibitory effect than other eluted fractions, we assumed
that the phenolic compounds in MPPg(y, were mainly responsible for the
inhibitory effects on o-amylase. The ICsy values of MPP, MPPyg,
MPP 4000, MPPg(y, and MPPgqq, to a-glucosidase were 7.81 + 0.69, 31.14
+1.78,6.11 + 0.07, 6.20 + 0.15 and 15.21 + 1.20 pg/mL, which were
much lower than that of acarbose against a-glucosidase (53.35 + 5.44
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pg/mL). Apparently, MPP4go, and MPPg(o, exhibited superior inhibitory
activities on a-glucosidase compared to other eluted fractions. Thus,
MPPgqq, was selected for additional research on the mechanisms of in-
hibition because of its superior inhibitory effects on a-amylase and
a-glucosidase.

Numerous studies have reported that plant polyphenols exerted
inhibitory effects on human carbohydrate digestive enzymes (Corkovi¢
et al., 2022). For instance, phenolic compounds from diverse food re-
sources were effective inhibitors of a-amylase and a-glucosidase,
including mulberry fruit (Wattanathorn et al., 2019), cagaita (Daza
et al., 2017), cinnamon (Souza et al., 2017), blue pea petal (Pasuka-
monset et al., 2016) and purple sweet potato (Yang et al., 2021). The
inhibitory effect of dietary polyphenols on a-amylase and a-glucosidase
contributed to the retarded starch digestion and diminished post-
prandial hyperglycemia. Therefore, polyphenols from mangosteen
pericarp might be created as functional foods to prevent or alleviate type
2 diabetes.

3.4. Lineweaver-Burk, Dixon and Cornish-Bowden plots

The inhibition kinetics of MPPgqq, to a-amylase/a-glucosidase were
investigated by Lineweaver-Burk, Dixon, and Cornish-Bowden plots in
this study. In general, there are three categories of reversible inhibitions
including competitive inhibition, non-competitive inhibition, and un-
competitive inhibition (Sun et al., 2019). As displayed in Fig. 2, for
a-amylase, lines intersected in the first quadrant (close to the y-axis) in
the Lineweaver-Burk plot (Fig. 2A). In addition, lines ran parallel with
each other in the Cornish-Bowden plot (Fig. 2B), and showed clear
intersection points in the Dixon plot (Fig. 2C). The results indicated that
the inhibitory type of MPPggy, on a-amylase was a competitive inhibi-
tion, and the K;. was 125.54 + 4.41 pg/mL. For a-glucosidase, all lines
were fitted and intersected in the second quadrant in the Line-
weaver-Burk plot (Fig. 2D), both Dixon (Fig. 2E) and Cornish-Bowden
(Fig. 2F) lines intersected at a single point, suggesting that the inhibi-
tion of MPPggy, against a-glucosidase was a mixed-type inhibition.
Calculation results showed that the K;. and K, were 6.30 + 0.04 pg/mL
and 2.50 + 0.02 pg/mL, respectively. The results indicated that MPPggo,
could not only compete with a-glucosidase for the active pNPG-binding
site(s) but also bind with a-glucosidase-pNPG inclusion complex in un-
competitive mode.

However, Li and colleagues found that the inhibitory effect of
polyphenols extracted with HCl aqueous from mangosteen pericarp on
a-amylase was a non-competitive inhibition (Li et al., 2022). Actually,
several parameters may affect the inhibition activities of polyphenol
extract on a-amylase and a-glucosidase, including sample preparation,
sample pretreatment, extraction technique, solvent type, and purifica-
tion method. The molecular structures of polyphenols also influenced
their inhibitory effects to a-amylase/a-glucosidase (Xiao et al., 2013;
Corkovi¢ et al., 2022). Therefore, polyphenols derived from the same
raw material could show varying levels of inhibitory activity against
a-amylase and a-glucosidase.

3.5. CD analysis

The corresponding CD spectrum may show the changes in the
structure of enzymes (He et al., 2021; Zheng et al., 2020). Therefore, the
current investigation predicted the proportional contents of a-helix,
B-sheet, p-turn, and random coil in a-amylase and a-glucosidase by CD
spectrum. The contents of the random coil and B-turn exhibited
increasing trends, while the contents of the a-helix and p-sheet showed
decreasing trends. The amount of p-sheet was 51.5% for a-amylase
without the addition of MPPggy, and it decreased to 50.6% in the
presence of 250 pg/mL MPPgg,.. On the contrary, the p-turn content for
a-amylase was 16.8% without the existence of MPPg(q, and it increased
to 17.7% in the presence of 250 pg/mL MPPgqo, (Fig. 3A). For a-gluco-
sidase, a-helix content decreased from 8.2% to 5.5% and f-sheet content
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decreased from 49.3% to 31.2% with the inclusive of MPPgqq,. In addi-
tion, B-turn content increased from 18.2% to 20.2%, and random coil
content increased from 28.8% to 38.6% (Fig. 3B). The findings sug-
gested that both a-amylase and a-glucosidase underwent modifications
in their secondary structures due to the effects of MPPggy,. From the
perspective of numerical changes, the impact of MPPgqq, on a-glucosi-
dase was greater than that on a-amylase, which might be due to the
binding sites of MPPgq, in enzymes. Molecular docking proved that the
binding sites of flavonoids in a-amylase and a-glucosidase were different
and various hydrogen bonds were formed (Tian et al., 2021). Therefore,
we speculated that the hydrogen bonds and hydrophobic action of the
enzymes might be changed by MPPggy,, which hindered the active site
formation or prevented substrate binding and subsequently affected the
activity of these enzymes (Wu et al., 2018).

3.6. Fluorescence quenching analysis

Fluorescence quenching experiments were conducted at different
temperatures (277.15 K, 298.15 K, and 310.15 K) to further examine the
interaction between a-amylase/a-glucosidase and MPPgqy,. The fluo-
rescence spectra of a-amylase and o-glucosidase were displayed in
Fig. 4. The maximum emission wavelength was 347.2 nm for a-amylase
(Fig. 4A-C) and 344.2 nm for a-glucosidase (Fig. 4E-G) at excitation of
280 nm. The fluorescence intensity of o-amylase/a-glucosidase
decreased with the increased MPPggq, concentration, indicating that the
endogenous fluorescence of the enzymes was quenched by MPPggo.
However, fluorescence quenching occurred without a significant peak
shift. As previously reported, aromatic amino acids including tyrosine,
tryptophan, and phenylalanine were primarily responsible for the
endogenous fluorescence of a-amylase/a-glucosidase (Deng et al., 2011;
Han et al., 2017). Consequently, it is possible that MPPgqo, directly
interacted with the aromatic amino acids, which in turn caused the
quenching of fluorescence.

Stern-Volmer parameters were used to clear the fluorescence
quenching mechanism. Fluorescence quenching can be categorized as
static quenching, dynamic quenching, or a mixed type of both, the first
mechanism forms a non-fluorescent complex between the fluorophore
and the quencher, while the second is induced by energy collision (Peng
et al., 2016). Fig. 4D and H showed the Stern-Volmer plots of fluores-
cence quenching of a-amylase and a-glucosidase induced by MPPgq, at
different temperatures. A strong linear correlation was seen among all
the Stern-Volmer curves, indicating that there was a single type of
interaction occurring between quencher and a-amylase/a-glucosidase.
The fluorescence quenching rate constant K, and Ky, of the samples
calculated through Stern-Volmer plots were shown in Table 3. The K,
value for a-amylase (0.4222 x 108 Lmg*s7!,0.4175 x 108 L mg ! s’f
and 0.4081 x 108 L mg™! s™! for 277.15 K, 298.15 K and 310.15 K,
respectively) and a-glucosidase (0.0200 x 10! L mg~! s7!, 0.0193 x
101! L mg~!s ! and 0.0180 x 10 L mg~! s7! for 277.15 K, 298.15 K
and 310.15 K, respectively) decreased as the temperature increased from
277.15 K to 310.15 K, indicating that the fluorescence quenching of
MPPg, to a-amylase/a-glucosidase was a static quenching (Tong, Zhu,
Guo, Peng, & Zhou, 2018).

3.7. Pearson correlation coefficient analysis

Pearson correlation is the most commonly used correlation analysis,
and Pearson correlation coefficients (r) describe the degree of correla-
tion between two variables. To establish the relationships between
phenolic compositions and functionality of polyphenols from mango-
steen pericarp. The correlation analysis between chemical composition
in MPPg(q, and inhibitory effects to a-amylase/a-glucosidase (ICsp) was
performed using Pearson correlation coefficients, and r value repre-
sented the strength of the correlation. Results presented in Table 4
showed that procyanidin B2 (r = —0.881), quercetin glucoside (r =
—0.761), and mangostanin (r = —0.999) were the main functional
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phenolics in MPPgqo, that inhibited a-amylase activity. Similarly, pro-
cyanidin B2 (r = —0.886), quercetin glucoside (r = —0.763), and man-
gostanin (r = —0.997) were also presented as the main phenolic
components associated with the a-glucosidase inhibition activity. The
high correlation between the biological activity of MPPggy, and pro-
cyanidin B2 may be attributed to the high content of procyanidin B2 in
MPPgq,. Procyanidins (r = —0.75) were also reported to have mainly
involved in o-amylase and o-glucosidase inhibitory activity in
polyphenol-rich extracts of six analyzed bean cultivars (Ombra et al.,
2018). Given the strong link, we anticipated that MPPgqo, would include
a significant amount of mangostanin. On the other hand, a median
quantity of mangostanin was found in MPPgqo, suggesting that the in-
hibition of a-amylase/a-glucosidase ought to rely more on a mix of
several substances.

4. Conclusions

In summary, the comprehensive phenolic profile of mangosteen
pericarp was revealed by gradient ethanol elution and UPLC-Q-TOF-MS/
MS. A total of twenty nine phenolic compounds were identified and
quantified. MPPggo, showed the highest TPC (623 mg/g) and presented
effective inhibitory activity on a-amylase and a-glucosidase with the
ICs0 values of 290.1 + 4.9 pg/mL and 6.20 + 0.15 pg/mL. Moreover, the
inhibition of MPPg(¢, on a-amylase was a competitive inhibition with Kj.
of 125.54 + 4.41 pg/mlL, while the inhibition on a-glucosidase was a
mixed-type inhibition with uncompetitive inhibition stronger than
competitive inhibition. The K;. and the Kj, were 6.30 + 0.04 pg/mL and
2.50 + 0.02 pg/mL, respectively. The inhibitory effects could be
attributed to the changes in the secondary structure as well as the static
fluorescence quenching of the enzymes induced by MPPgq, treatment.
In addition, Pearson correlation coefficients revealed that procyanidin
B2, quercetin glucoside, and mangostain contributed most to inhibiting
a-amylase and a-glucosidase activity. The above findings indicated that
phenolic compounds from mangosteen pericarp can potentially be
developed into the inhibitors of a-amylase/a-glucosidase for type 2
diabetes treatment.
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